Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 252: 123897, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067699

RESUMO

This work proposes an automated strategy for the inorganic selenium speciation in infusion tea samples, employing an MSFIA-CVG-AFS system and sodium tetrahydroborate for chemical vapor generation. The selenium total is determined after an online prereduction step of selenium (VI) to selenium (IV) in alkaline media, using a UV reactor with a 15 W Hg lamp. Selenium (IV) is quantified directly on the sample, and selenium (VI) is determined by the difference between the total selenium and selenium (IV) concentrations. The optimization of the chemical parameters: hydrochloric acid - hydrobromide acid solution concentration, potassium iodide concentration, sodium hydroxide concentration, and sodium tetrahydroborate concentration was performed using a (24-1) two-level fractional factorial design. The validation parameters were determined for total selenium and selenium (IV), and the results found were: limits of detection and quantification of 0.05 and 0.18 µg L-1, respectively; a linear range of 0.18-5.0 µg L-1, precision expressed as the relative standard deviation of 2.1% for a sample number of 10, for both analytes. The system allows the speciation analysis with an injection throughput of 15 injections per hour. This analytical method was applied for inorganic selenium speciation in nine infusions of tea samples purchased commercially in supermarkets in Palma de Mallorca City, Spain. The concentrations of selenium (IV) and total selenium varied from 0.2 to 0.6 µg L-1 and 0.4-2.0 µg L-1, respectively. The accuracy method was evaluated using spike tests, and the recoveries achieved varied from 91 to 111%.


Assuntos
Selênio , Selênio/análise , Espectrometria de Fluorescência , Boroidretos , Chá , Espectrofotometria Atômica/métodos
2.
Talanta ; 165: 502-507, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28153289

RESUMO

This paper proposes the use of a multisyringe flow injection analysis (MSFIA) system for inorganic antimony speciation analysis, trimethyl antimony(V) and determination of total antimony in soil samples using hydride generation atomic fluorescence spectrometry (HG-AFS). Total antimony has been determined after reduction of antimony(V) to antimony(III) using potassium iodide and ascorbic acid. For determination of total inorganic antimony the sample is percolated in a mini-column containing the Dowex 50W-X8 resin for retention of the organic species of antimony. Antimony(III) is quantified in presence of 8-hydroxyquinoline as masking agent for antimony(V) after an extraction step of the organic antimony species using the also same mini-column. The trimethyl antimony(V) content is found by difference between total antimony and total inorganic antimony. By other hand, antimony(V) is quantified by difference between total inorganic antimony and antimony(III). The analytical determinations were performed using sodium tetrahydroborate as reducing agent. The optimization step was performed using two-level full factorial design and Doehlert matrix involving the factors: hydrochloric acid and sodium tetrahydroborate concentrations and sample flow rate. The optimized experimental conditions allow the antimony determination utilizing the external calibration technique with limits of detection and quantification of 0.9 and 3.1ngg-1, respectively, and a precision expressed as relative standard deviation of 3.2% for an antimony solution of 5.0µgL-1. The method accuracy was confirmed by analysis of the soil certified reference material furnished from Sigma-Aldrich RTC. Additionally, addition/recovery tests were performed employing synthetic solutions prepared using trimethyl antimony(V), antimony(III), antimony(V) and five soil samples. The antimony extraction step was performed in a closed system using hydrochloric acid, ultrasonic radiation and controlled temperature. The method proposed was applied for analysis of thirteen soil samples collected in different sites of the Balearic Islands, Spain, and the results obtained varied from 19 to 46ngg-1 for trimethyl antimony(V) and from 113 to 215ngg-1 for total inorganic antimony. The concentrations obtained to antimony(V) were always higher than for antimony(III) in all the analyzed samples.

3.
Talanta ; 156-157: 29-33, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27260431

RESUMO

This paper proposed a multisyringe flow injection analysis (MSFIA) system for antimony, arsenic and selenium determination in peanut samples by hydride generation atomic fluorescence spectrometry (HG-AFS). The optimization step of the hydride generation was performed using a two-level full factorial design involving the parameters: hydrochloric acid, sodium tetrahydroborate and potassium iodide concentrations. So, using the chemical conditions optimized, this method allows the determination of these elements employing the external calibration technique using aqueous standards with limits of detection and quantification of 0.04 and 0.14µgL(-1) for antimony, 0.04 and 0.14µgL(-1) for arsenic and 0.14 and 0.37µgL(-1) for selenium, respectively. Additionally, the effect of vanadium, chromium, cobalt, nickel, zinc, copper, iron and molybdenum on the generation of chemical vapour was also studied. The precision expressed as relative standard deviation varied from 1.2 to 3.6% for antimony, 1.8-3.9% for arsenic and 1.8-2% for selenium. The accuracy for arsenic and selenium was confirmed using the certified peach leaves reference material SRM 1547 produced by National Institute of Standard and Technology. The proposed method showed 45 injection throughput (h(-1)) using 1.6mL sample volume for each element, 0.8mL NaBH4 0.5% (w/v) containing NaOH 0.05% (w/v), 0.8mL HCl 5M and 0.4mL KI 14% (w/v) containing L-ascorbic acid 2.5% (w/v). The method was applied to the determination of antimony, arsenic and selenium in peanut samples, which were firstly lyophilized and afterward digested using microwave assisted radiation. Six samples were analyzed and the contents of the elements found were: 28.7-41.3µgkg(-1) for arsenic, 86.4-480.1µgkg(-1) for selenium and 32.6-52.4µgkg(-1) for antimony. Addition/recovery tests were also performed to confirm the method accuracy for the three elements.

4.
Anal Chem ; 88(14): 6990-5, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27336802

RESUMO

We present the first application of submicrometric magnetic nanoporous carbons (µMNPCs) as sorbents for automated solid-phase extraction (SPE). Small zeolitic imidazolate framework-67 crystals are obtained at room temperature and directly carbonized under an inert atmosphere to obtain submicrometric nanoporous carbons containing magnetic cobalt nanoparticles. The µMNPCs have a high contact area, high stability, and their preparation is simple and cost-effective. The prepared µMNPCs are exploited as sorbents in a microcolumn format in a sequential injection analysis (SIA) system with online spectrophotometric detection, which includes a specially designed three-dimensional (3D)-printed holder containing an automatically actuated electromagnet. The combined action of permanent magnets and an automatically actuated electromagnet enabled the movement of the solid bed of particles inside the microcolumn, preventing their aggregation, increasing the versatility of the system, and increasing the preconcentration efficiency. The method was optimized using a full factorial design and Doehlert Matrix. The developed system was applied to the determination of anionic surfactants, exploiting the retention of the ion-pairs formed with Methylene Blue on the µMNPC. Using sodium dodecyl sulfate as a model analyte, quantification was linear from 50 to 1000 µg L(-1), and the detection limit was equal to 17.5 µg L(-1), the coefficient of variation (n = 8; 100 µg L(-1)) was 2.7%, and the analysis throughput was 13 h(-1). The developed approach was applied to the determination of anionic surfactants in water samples (natural water, groundwater, and wastewater), yielding recoveries of 93% to 110% (95% confidence level).

5.
Talanta ; 148: 694-9, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26653503

RESUMO

Most of the procedures for antimony determination require time-consuming sample preparation (e.g. liquid-liquid extraction with organic solvents), which are harmful to the environment. Because of the high antimony toxicity, a rapid, sensitive and greener procedure for its determination becomes necessary. The goal of this work was to develop an analytical procedure exploiting for the first time the cloud point extraction on a lab-in-syringe flow system aiming at the spectrophotometric determination of antimony. The procedure was based on formation of an ion-pair between the antimony-iodide complex and H(+) followed by extraction with Triton X-114. The factorial design showed that the concentrations of ascorbic acid, H2SO4 and Triton X-114, as well as second and third order interactions were significant at the 95% confidence level. A Box-Behnken design was applied to obtain the response surfaces and to identify the critical values. System is robust at the 95% confidence level. A linear response was observed from 5 to 50 µg L(-1), described by the equation A=0.137+0.050C(Sb) (r=0.998). The detection limit (99.7% confidence level), the coefficient of variation (n=5; 15 µg L(-1)) and the sampling rate was estimated at 1.8 µg L(-1), 1.6% and 16 h(-1), respectively. The procedure allows quantification of antimony in the concentrations established by environmental legislation (6 µg L(-1)) and it was successfully applied to the determination of antimony in freshwater samples and antileishmanial drugs, yielding results in agreement with those obtained by HGFAAS at the 95% confidence level.

6.
Talanta ; 144: 1155-62, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26452941

RESUMO

A miniaturized analyzer encompassing a poly(methyl methacrylate) chip with integrated spectrofluorimetric detection and solutions propelling by a multi-syringe module is proposed. Iodide was determined through its catalytic effect on the reaction between Ce(IV) and As(III). Matrix isopotential synchronous fluorescence was explored to set the excitation and emission wavelengths. A two-level full factorial design allowed to evaluate the significance of variables (Ce(IV), As(III) and H2SO4 concentrations) and their interaction effects in the experimental domain. A Doehlert Matrix was applied to identify the critical values. The optimized procedure showed a linear response from 1 to 100 µg L(-1) (S=53.7+2.61C, in which S is the net fluorescence and C is iodide concentration in µg L(-1)). Detection limit, coefficient of variation (n=6) and sampling rate were estimated at 0.3 µg L(-1), 0.8% and 20 h(-1), respectively. Recoveries within 90-117% were estimated for iodide spiked to seawater samples. The proposed procedure stands out because of the portability, robustness, and simplicity for in-field analysis of iodide in seawater.


Assuntos
Iodetos/análise , Água do Mar/química , Espectrometria de Fluorescência/instrumentação , Seringas , Arsênio/química , Catálise , Césio/química , Hidrodinâmica , Iodetos/química , Limite de Detecção , Análise Multivariada
7.
Talanta ; 143: 254-262, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26078157

RESUMO

Parabens are widely used in dairy products, such as in cosmetics and personal care products. Thus, in this work a multi-syringe chromatographic (MSC) system is proposed for the first time for the determination of four parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) in cosmetics and personal care products, as a simpler, practical, and low cost alternative to HPLC methods. Separation was achieved using a 5mm-long precolumn of reversed phase C18 and multi-isocratic separation, i.e. using two consecutive mobile phases, 12:88 acetonitrile:water and 28:72 acetonitrile:water. The use of a multi-syringe buret allowed the easy implementation of chemiluminescent (CL) detection after separation. The chemiluminescent detection is based on the reduction of Ce(IV) by p-hydroxybenzoic acid, product of the acid hydrolysis of parabens, to excite rhodamine 6G (Rho 6G) and measure the resulting light emission. Multivariate designs combined with the concepts of multiple response treatments and desirability functions have been employed to simultaneously optimize and evaluate the responses. The optimized method has proved to be sensitive and precise, obtaining limits of detection between 20 and 40 µg L(-1) and RSD <4.9% in all cases. The method was satisfactorily applied to cosmetics and personal care products, obtaining no significant differences at a confidence level of 95% comparing with the HPLC reference method.


Assuntos
Cromatografia/instrumentação , Cosméticos/química , Medições Luminescentes/métodos , Parabenos/análise , Parabenos/química , Seringas , Cromatografia/economia , Poluentes Ambientais/análise , Poluentes Ambientais/química , Reprodutibilidade dos Testes
8.
Talanta ; 110: 58-65, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23618176

RESUMO

A dedicated pressure-driven mesofluidic platform incorporating on-chip sample clean-up and analyte preconcentration is herein reported for expedient determination of trace level concentrations of waterborne inorganic mercury. Capitalizing upon the Lab-on-a-Valve (LOV) concept, the mesofluidic device integrates on-chip micro-solid phase extraction (µSPE) in automatic disposable mode followed by chemical vapor generation and gas-liquid separation prior to in-line atomic fluorescence spectrometric detection. In contrast to prevailing chelating sorbents for Hg(II), bare poly(divinylbenzene-N-vinylpyrrolidone) copolymer sorptive beads were resorted to efficient uptake of Hg(II) in hydrochloric acid milieu (pH=2.3) without the need for metal derivatization nor pH adjustment of prior acidified water samples for preservation to near-neutral conditions. Experimental variables influencing the sorptive uptake and retrieval of target species and the evolvement of elemental mercury within the miniaturized integrated reaction chamber/gas-liquid separator were investigated in detail. Using merely <10 mg of sorbent, the limits of detection and quantification at the 3s(blank) and 10s(blank) levels, respectively, for a sample volume of 3 mL were 12 and 42 ng L(-1) Hg(II) with a dynamic range extending up to 5.0 µg L(-1). The proposed mesofluidic platform copes with the requirements of regulatory bodies (US-EPA, WHO, EU-Commission) for drinking water quality and surface waters that endorse maximum allowed concentrations of mercury spanning from 0.07 to 6.0 µg L(-1). Demonstrated with the analysis of aqueous samples of varying matrix complexity, the LOV approach afforded reliable results with relative recoveries of 86-107% and intermediate precision down to 9% in the renewable µSPE format.


Assuntos
Automação , Mercúrio/análise , Microfluídica/métodos , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Limite de Detecção , Pressão
9.
Food Chem ; 137(1-4): 159-63, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23200004

RESUMO

In the present paper the use of a MSFIA system for determination of mercury in rice by cold vapour atomic fluorescence spectrometry (CV AFS) is proposed. The sample digestion is performed in a microwave oven using nitric acid and hydrogen peroxide. The experimental conditions for vapour generation were determined using a full two-level factorial design involving the following factors: nitric acid and tin chloride concentrations and sample flow rate. Employing the conditions optimised, the method allows the determination of mercury using the external calibration technique with aqueous standards. The reached limits of detection and quantification were 0.48 and 1.61 ng g⁻¹ respectively, and the precision (as relative standard deviation) was 3.28% and 1.56% for rice samples with a mercury content of 3.63 and 5.81 ng g⁻¹, respectively. The method accuracy was confirmed analysing a certified reference material of rice flour furnished by National Institute of Standard and Technology. The interference of nitrous acid and nitrous oxides are removed using potassium dichromate. The method was applied to mercury determination in twelve rice samples acquired in Palma de Mallorca (Spain) between the months of January and April of 2012. The mercury content found varied from 2.15 to 7.25 ng g⁻¹. These results agree with those reported by others authors.


Assuntos
Contaminação de Alimentos/análise , Mercúrio/análise , Oryza/química , Espectrometria de Fluorescência/métodos , Espectrofotometria Atômica/métodos , Espectrometria de Fluorescência/instrumentação , Espectrofotometria Atômica/instrumentação
10.
Talanta ; 77(1): 73-6, 2008 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-18804601

RESUMO

In this paper is proposed a simultaneous pre-concentration procedure using cloud point extraction for the determination of copper and zinc in food samples employing sequential multi-element flame atomic absorption spectrometry (FS-FAAS). The reagent used is 1-(2-pyridylazo)-2-naphthol (PAN) and the micellar phase is obtained using the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) and centrifugation. The optimization step was performed using Box-Behnken design for three factors: solution pH, reagent concentration and buffer concentration. A multiple response function was established in order to get an experimental condition for simultaneous extraction of copper and zinc. Under the optimized experimental conditions, the method allows the determination of copper with a limit of detection (3sigma(b)/S, LOD) of 0.1 microg L(-1), precision expressed as relative standard deviation (R.S.D.) of 2.1 and 1.3% (N=10), for copper concentrations of 10 and 50 microg L(-1), respectively. Zinc is determined with a LOD of 0.15 microg L(-1) and precision as R.S.D. of 2.7 and 1.7% for concentrations of 10 and 50 microg L(-1), respectively. The enhancement factors obtained were 36 and 32 for copper and zinc, respectively. The accuracy was assessed by analysis of certified reference materials, namely, SRM 1567a - Wheat Flour and SRM 8433 - Corn Bran from National Institute of Standards & Technology and BCR 189-wholemeal flour from Institute of Reference Materials and Measurements. The method was applied to the determination of copper and zinc in oats, powdered chocolate, corn flour and wheat flour samples. The copper content in the samples analyzed varied from 1.14 to 3.28 microg g(-1) and zinc from 8.7 to 22.9 microg g(-1).


Assuntos
Cobre/análise , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Espectrofotometria Atômica/instrumentação , Espectrofotometria Atômica/métodos , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...